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to remain locked in the NaNOa during thermal 
cycling. Other solids which undergo reversible 
thermal transformations (e.g. quartz [11] at 
575 ~ would be expected to behave in a 
manner similar to NaNOa. 
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The Number of Components Required 
in a Composite Material 

One of the aims of research in composite 
materials is to reduce or eliminate the empirical 
approach, in order to design a composite 
material, the physical properties of which have 
been specified in advance, from a knowledge of 
the physical propertie s of available individual 
components; for example, to specify values for 
properties such as specific gravity, moduli of 
elasticity, and thermal conductivity in the final 
composite, and to calculate how these may be 
obtained by combining individual components, 
and what will be the effect of the geometrical 
arrangement of the latter upon these properties. 
The question to which we direct our attention is: 
what is the minimum number of components 
required to achieve the desired result ? 

This question is only concerned with "rele- 
vant" physical properties. This distinction 
between "relevant" and "irrelevant" physical 
properties in a given application is of great 
importance in materials science. It is obvious 
that, under any given circumstances, certain 
properties are relevant and the remainder 
irrelevant. Thus, in a milk bottle, certain mech- 
anical properties like impact strength are 
important in use, whilst others such as dielectric 
constant are unimportant. It  follows that, in 
the selection of materials for the design of 
composites, attention need only be focused on a 
relatively small number of properties. 
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We define a composite material as a solid 
which is made by physically combining two or 
more existing materials to produce a multiphase 
system with different physical properties from 
the starting materials. A chemical reaction may 
occur during or after the process of manu- 
facture, so that in certain cases a phase in a 
composite material may differ from the starting 
material (for example, the rubber phase in high 
impact polystyrene has different mechanical 
properties from the original rubber; another 
example is the matrix in concrete). However, 
this point is not central to the argument, since 
we are concerned with the finished composite 
and hence the relationship between: (i) the 
physical properties of the finished composite; 
(ii) the geometrical structure of the composite; 
and (iii) the physical properties of the consti- 
tuent phases. For the purpose of this discussion, 
the individual phases are assumed to be uniform 
and isotropic. 

We wish to deal with the problem: if it is 
desired to specify n properties in a composite 
material (this will usually be a small number -  
say < 6), how many single materials or com- 
ponents are required to attain the desired 
result ? (This is an idealised form of the problem, 
since it states that a given property in the 
composite should have a specific value; for 
example, a Young's modulus E of I00 000 lbf/ 
in. ~ (1 lbf/in. ~ = 7 • 104 dyn/cm~). In practice, 
a range of 100 000 to 120 000 lbf/in. 2 may be 
satisfactory, or E should be > 100 000 lbf/in2.) 
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The composite material Mc will be described 
as follows (where the subscript c refers to the 
composite and Pl, P2, etc. are physical proper- 
ties): 

Mc having Plc, P2c, PJ~ . . . . . . . .  P,,c 

Pl~ . . . . . . . .  Pnc are the n relevant physical 
properties which it is wished to specify. Each 
component r has an appropriate value for the 

properties uniquely defined by concentration, 
the relationship between m and n is: 

m = n + 1 (3) 

since there are n equations of the type (2) in 
addition to equation 2a. 

This is illustrated in fig. 1 for two additive 
properties P and p and two components. It 
will be seen that, having specified Pc at a given 

corresponding physical properties Pl . . . . . . . . .  value, a given volume fraction Vc is required 
Pn ,  which will, in general, be different from the 
corresponding values for the composite. 

We now wish to know whether it is possible 
to combine m starting materials to produce a 
composite having n specified physical properties, 
and whether there is a relationship between m 
and n. It is at once apparent that a necessary, 
but not sufficient, condition to be satisfied for a 
feasible solution, where the relevant function or 
boundary functions relating the property to the 
composition are monotonic, is: 

Minimum p~, < P~c < maximum p~r 
r = 1 . . . .  m (1) 
i = 1  . . . .  n 

i.e. the value required of a property in the 
composite material must lie between the lowest 
and highest of the corresponding component 
values. For  the sake of simplicity, the following 
discussion is confined to monotonic functions 
of property and composition. 

Case A The property is independent o f  structure 
There is a clear distinction between those 
properties which are dependent upon, and those 
which are independent of, the geometrical 
configuration of the composite. Certain physical 
properties (e.g. density or specific heat) depend 
only upon the concentration or volume fraction 
of the components and are independent of the 
geometry of the system. Such properties may be 
additive (e.g. density) or non-additive. 

If, for example, they are additive, then 
" 2  m 

P~c = Pi~ Vi~ (2) 
r = l  

Y ~ m  

where 27 Vr = 1 (2a) 
r = l  

where P~c is the property p~ of the composite 
Me, p~r is the same property of a component r, 
and V~ is the volume fraction of the same 
component. 

For  additive or non-additive (but monotonic) 

which, in turn, determines pc. If it is necessary 
to specify Pc at an independent value, an 
additional component is needed. 

m 

Pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

!' ! 

0 VOLUME FRACTION ~r 

Figure 1 Property as a function of volume fraction - two  
components and two properties uniquely defined by V. 

Case B The property is structure-dependent This 
is a more usual case, and applies to such 
properties as elastic moduli, and thermal and 
electric conductivity. Since this class of property 
is dependent on structure, it is not uniquely 
defined by the concentrations of the components, 
i.e.: 

P~c = f ( P ~ ,  P~2 . . . .  p~m, V, G) (4) 

In this relation, V is the volume fraction of the 
components and G embraces the geometrical 
variables of the components such as phase 
continuity, orientation of  particles, size and size 
distribution of particles [1-4] which inde- 
pendently influence p~o. It will be seen below that 
the influence of G is controlled by the upper 
and lower bounds ofp~c, which are themselves a 
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function of the individual values of p~t, Pi2, 
etc. 

The physical significance of G is seen if we 
consider the simple two-component case for an 
elastic modulus, or thermal or electrical con- 
ductivity (which show identical relationships). 
This is shown in fig. 2. 

PI 

Pt 

Pc 

Pz 
P2 

Figure 2 Property a s  a function of volume fraction - t w o  
components and two properties not uniquely defined 
by V. 

The upper bound is given by the "parallel" 
model: 

pc = p~ (t  - v )  + p~ v (5) 

where V is the volume fraction of component 2. 
The lower bound is given by the "series" 

model: 

! = Vpl -~- (1 -- V)p2  (6) 

Pc P~P~ 

Fig. 2 shows a plot of equations 5 and 6 for 
two cases, where the individual component 
properties are shown by P1 and P2, and pl and 
P2, and where: 

pl/p2 < P1/P2 

to indicate the way in which the bounds diverge 
as this ratio increases; Pt and P~, for example, 
might be bulk moduli, and p~ and P2 thermal 
conductivity. 

A given value of P may, in theory, be arrived 
at over a range of volume fractions for structure- 
dependent properties, and this is shown in fig. 2 
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for the value Pc as the line X Y .  Not only does 
the volume fraction vary in going from X to 
Y, but so also does the geometrical arrangement 
of the phases. It should be emphasised that, 
although this is theoretically possible, it may not 
be practical for many systems with our present 
state of knowledge. There are relatively few 
methods of producing alternative phase arrange- 
ments (reference 2, chapter 1). 

Similarly, a range of values of P may be 
obtained for a given value of V, as shown by 
the line AB. Since P is a function of the geo- 
metrical arrangement G (equation 4), the signifi- 
cance of G may be seen by evaluating PcB -- Pea 
at constant volume-fraction: 

PeB - -  PeA = P 1  (1 - -  V) + P2V  
[ P1P2 

- [P1 V + ~ (-1 -- V)] (7) 

which reduces to 

PcB--PeA=(PI--P2)2/(IP~Iv@~) ( 8 )  

Following this introduction, we now wish to 
show the way in which a second property P0 will 
vary for a constant value of Pc shown in the 
diagram as Pc~. The limits are immediately 
evident as P'e and P"c, which represent the 
intercepts of V~ and V~ on the series and parallel 
models respectively. Thus for every value Pc 
there is a range of values of Pc, and, if it were 
independently required that Pe should fall 
between P'e and P"c (i.e. P'c > Pc > P"e), then 
we could obtain two specified values of proper- 
ties P and p with two components. In this case: 

m = n (9) 

which should be compared with equation 3. 
In order to establish the relationship between 

p and V between the limits P'c and P"c, we make 
the assumption that, for each point q~ on the 
straight line X Y ,  there is a corresponding point 
$'  on a curve X'Y", which can be obtained as 
follows : 

A'~' A~ (in fig. 2) (10) 
A'B; = A---B 

o r  

i.e. 

pC,' --  pA' __ PO --  PA 
p B ' - -  pA '  PB - -  P A  

, ( P ( ~ - - P A )  
Pc, = ~ ~ (p~" -- pA') + pa' 
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o r  

P(~' -~ - - -  -- ( P1P2 
P~V + Pz(1 -- V) -- VPz + P2(1 -- V) 

p2V pl(1 -- V) - ~plV 
/ 

+ p ~ ( l -  PaPs V))]  + 

PiP2 
+ p l r  + p~(1 - v) 0l) 

in which P1, P2, Pl, P2, and P~ are constants, 
since Pc, has been given a particular value. 

We conclude that the geometrical variables 
represented by G in equation 4 lead to an 
additional limited degree of freedom where the 
property is structure-dependent. As mentioned 
above, if the desired second physical property 
pC' of the composite falls between P'c and p"c 
(having previously first specified a value P~  for 
the first property), only two components are 

needed to permit two physical properties to be 
specified. The probability of this increases if 
P~  or p~' are given upper and lower limits 
instead of being given unique values as above. 
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